Intracameral injection of bevacizumab (Avastin) to treat anterior chamber neovascular membrane in a painful blind eye

A Raghuram, DNB, FRCS; V R Saravanan, DNB, FRCS; V Narendran, DNB

Intracameral injection of bevacizumab (Avastin) helped in the successful regression of an anterior chamber neovascular membrane in a painful blind eye. The effect was persistent even after six months of follow-up. This is the first report on intracameral administration of bevacizumab with six months of follow-up.

Key words: Avastin, bevacizumab, intracameral injection


Intravitreal administration of bevacizumab (Avastin, Genetech, Inc, San Francisco, CA), a humanized monoclonal antibody to vascular endothelial growth factor (VEGF) has recently been reported to be of benefit in choroidal neovascular membrane, retinal neovascularization in proliferative diabetic retinopathy and iris neovascularization. We observed rapid resolution of anterior chamber neovascularization following intracameral injection of bevacizumab in a patient with painful blind eye.

References
Brief Reports

Regression of retinal and iris neovascularization after intravitreal injection of bevacizumab in human eyes has been reported.3-5 Although there is one report10 on intracameral administration of bevacizumab with one month follow-up, we load of VEGF was taken care of by the therapy and there was no new VEGF production. Probably this is the reason why the patient did not have recurrence.

Case Report

A 31-year-old woman presented with pain and redness in her left eye. Visual acuity in the left eye was no perception of light and 20/20 in the right eye. The right eye was normal. The left eye was blind for the past 20 years following an injury. On examination the left eye showed circumcorneal congestion, anterior chamber cells and flare, peripheral anterior synechiae, ectropion uveae and an active fibrovascular membrane [Fig. 1A] on the iris and over the partially absorbed cataractous lens. The intraocular pressure was 6 mmHg. Contact B-scan ultrasonography revealed a total retinal detachment. Earlier the patient was treated with long-term topical steroids and cycloplegics with no significant relief of symptoms. So the patient was offered an off-label intracameral injection of 1.00 mg of bevacizumab (0.04 ml of Avastin, Genentech, INC, San Francisco, CA at a concentration of 25 mg /ml). The consent of the patient was obtained after explaining the risks and benefits of the treatment. One week following the intracameral injection the circumcorneal congestion disappeared and the anterior chamber inflammation decreased and there was dramatic regression of neovascularization [Fig. 1B]. The post injection intraocular pressure was 8 mmHg on day one and after one week. After six months this response to treatment sustained and the patient remained symptom-free [Fig. 1C].

Discussion

Genentech (San Francisco, CA) developed a monoclonal antibody against VEGF that was tested as a cancer therapy with the idea that reducing the vascular supply to a tumor may inhibit growth of the cancer. VEGF is a protein and is the most important growth factor for neovascularization in a variety of tissues including the eye.

Hypoxia stimulates the secretion of VEGF in retinal pigment epithelial cells and VEGF production increases with neovascularization of the iris in primates.6 In retinal detachment there is alteration in retinal perfusion arising from separation of the choroidal blood supply from the retinal pigment epithelium and can result in relative retinal ischemia. This ischemia stimulates the production of VEGF in retinal pericytes, endothelial cells, the retinal pigment epithelium and possibly other cell types.8 The VEGF is either bound to the cell-surface or basement-membrane proteoglycans containing heparin (VEGF189, 286) or freely diffusible within the vitreous cavity (VEGF121, 165).9 Diffusible VEGF follows its concentration gradient from the vitreous to the anterior segment and is cleared through the trabecular meshwork. Neovascularization can arise anywhere along this course. Inhibitions by means of antibody, antibody fragment or aptamer binding are strategies used in medicine to reduce the effects of VEGF in a variety of diseases. Our patient received 1 mg of bevacizumab, an antibody to VEGF, as an intracameral injection. The complete regression of neovascular membrane was noted after a week. We expected recurrence of neovascularization after some time, but there was no recurrence even after six months. Lloyd Paul Aiello and associates have mentioned in their article on VEGF in ocular fluid that “cell death without ischemia would have less vasoproliferative potential, since increased VEGF production would not be possible”.8 In our patient the eye is going for phthisical state and maybe the cells responsible for the production of VEGF are dying without ischemia. The existing

Figure 1: (A) Slit-lamp photograph showing circumcorneal congestion and neovascularization over the iris and lens capsule (Black arrow); (B and C) Photographs showing the total regression of neovascularization one week and six months respectively following intracameral injection of bevacizumab (Avastin)
believe that this is the first report on intracameral administration of bevacizumab with six months of follow-up. This case clearly demonstrates the dramatic effect of bevacizumab on ocular neovascularization, which might help in widening the spectrum of bevacizumab usage in ocular diseases.

Acknowledgment

We thank Dr. Richard F Spaide of Vitreous-Retina-Macula consultants of New York, NY, USA.

References

7. Adams AP, Miller JW, O’Reilly M. Vascular permeability factor (vascular endothelial growth factor) is produced in the retina and elevated levels are present in the aqueous humor of patients with iris neovascularization. Invest Ophthalmol Vis Sci 1993;34:1440.

Lenz microphthalmic syndrome in an Indian patient

Arvind Gupta, MS; Renuka Srinivasan, MS; Datta G Pandian, MBBS; K Ramesh Babu, MS

A case of Lenz microphthalmic syndrome in a seven-month-old male child having features of unilateral anophthalmia, microcephaly, external ear and finger abnormalities, hydrocele and hypospadias is being reported. The unilateral involvement and anophthalmia is rare in Lenz syndrome. The manifestation of hydrocele in association with this syndrome has not been seen in earlier cases. This is the first documented case from India.

Key words: Anophthalmia, Lenz syndrome, microphthalmia, X-linked recessive


Lenz microphthalmic syndrome was named in 1955 after Widukind Lenz,1 a German medical geneticist. It is characterized by bilateral microphthalmia which is usually asymmetric but very rarely it may have unilateral manifestation and even anophthalmia.2 Lenz microphthalmic syndrome is extremely rare with only few isolated cases being reported. Thus the incidence of this syndrome cannot be determined. It is associated with malformations of ears, teeth, fingers, skeleton and genitourinary systems. About 75% of the patients have microcephaly and mental retardation.2 We hereby report an Indian patient with Lenz microphthalmia syndrome. To the best of our knowledge, this is the first case report from India.

Case Report

A seven-month-old male child presented to us for asymmetry in the size of the eyes, left smaller than right [Fig. 1A]. He was born at full term to parents of a consanguineous marriage (first cousins) after an uneventful pregnancy and a normal vaginal delivery.

On ocular examination left eyelid appeared smaller and on retracting the eyelids the socket was found to be empty. Right eye was normal on examination. The systemic examination showed multiple congenital anomalies including microcephaly (head circumference was 34 cm, lesser than the third percentile for that age), external ear and finger abnormalities, hydrocele and hypospadias [Fig. 1B]. The infant had malformed left ear with hypoplasia of the antihelices, fusion of helix with the tragus and the opening of the external auditory canal could not be seen [Fig. 1C]. The left hand showed four normal digits and pre-axial duplication of thumb. The right hand was normal. Additionally, the child could not sit with support. The presence of kyphosis of the thoracic part of the vertebral column might have been responsible for his inability to sit. Dental abnormalities and mental retardation could not be ruled out.

Computed tomography scan of the orbit and brain showed absence of left eye in the bony socket with rudimentary optic nerve seen in the orbit and extending for a short distance into the cranium. There was hypoplasia of optic chiasma and aplasia of the entire visual pathway on the left side. The right side of